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We report a detailed numerical investigation of homogeneous decaying turbulence
in an electrically conducting fluid in the presence of a uniform constant magnetic
field. The asymptotic limit of low magnetic Reynolds number is assumed. Large-eddy
simulations with the dynamic Smagorinsky model are performed in a computational
box sufficiently large to minimize the effect of periodic boundary conditions. The initial
microscale Reynolds number is about 170 and the magnetic interaction parameter N

varies between 0 and 50. We find that except for a short period of time when N = 50,
the flow evolution is strongly influenced by nonlinearity and cannot be adequately
described by any of the existing theoretical models. One particularly noteworthy
result is the near equipartition between the rates of Joule and viscous dissipations of
the kinetic energy observed at all values of N during the late stages of the decay.
Further, the velocity components parallel and perpendicular to the magnetic field
decay at different rates, whose value depends on the strength of the magnetic field
and the stage of the decay. This leads to a complex evolution of the Reynolds
stress anisotropy ellipsoid, which goes from being rod-shaped, through spherical to
disc-shaped. We also discuss the possibility of the power-law decay, the comparison
between computed, experimental and theoretical decay exponents, the anisotropy of
small-scale fluctuations, and the evolution of the spectral energy distributions.
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1. Introduction
The decay of homogeneous isotropic turbulence (HIT) has been extensively

considered in the literature. It has both practical significance – e.g. for the calibration
of the k–ε model coefficients (George et al. 2001) – and fundamental implications
for the understanding of turbulence (Pope 2000). In this context, two points are
particularly relevant: the establishment of a power-law decay of the turbulent kinetic
energy and its decay rate. Although there is a general agreement, which is also
supported by self-similarity arguments, that the decay follows a power law, the
quantification of the decay exponent has proved elusive. The availability of direct
numerical simulations (DNS) at higher resolution has recently renewed the focus on
this problem (Ishida, Davidson & Kaneda 2006).

A more general case of homogeneous turbulence is characterized by directional
anisotropy. This can in particular be observed in an electrically conductive fluid
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flowing in the presence of a uniform external magnetic field B0. Practical examples
include crystal growth in semiconductors, molten metals in metallurgy and lithium
cooling blankets for future fusion reactors. In these and other circumstances, the
magnetic field induced by the electric currents in the liquid metal is negligible, in
comparison to that imposed externally. The magnetic Reynolds number being small,
the quasi-static approximation (Roberts 1967) can be used to simplify the expression
of the Lorentz force. According to this approximation, the flow is characterized by
two non-dimensional parameters: the hydrodynamic Reynolds number Re and the
magnetic interaction parameter N (or alternatively the Hartmann number Ha =
(ReN)1/2). N represents the ratio of the Lorentz force to inertia. Hereafter, the
combination of low magnetic Reynolds number, uniform magnetic field and quasi-
static approximation are always assumed, when referring to magnetohydrodynamic
(MHD) turbulence of liquid metals.

Our understanding of decaying MHD turbulence remains incomplete. The paucity
of detailed data on the decay properties of MHD turbulence is partly due to
the anisotropy, which complicates the analytical treatment, and partly due to the
complexity of the experiments reproducing such a case. Progress was nonetheless
made by Moffatt (1967), who considered the early stages of the decay of the velocity
fluctuations after sudden application of a magnetic field of large intensity (i.e. N � 1).
His analysis assumed a linear regime and, therefore, was valid only for a short time
after the application of B0, well before nonlinear interactions arise. Moffatt (1967)
showed that the magnetic field introduced an imbalance between the different velocity
components: the kinetic energy of the velocity parallel to the magnetic field becomes
twice that of the velocities in the perpendicular directions. He also showed that the
Fourier modes of the fluctuating velocity were more effectively damped along the
direction of the magnetic field. The prediction was made that the kinetic energy
would decay according to the power law t−1/2 for times t much smaller than one
eddy turnover time. Due to the linearity hypothesis, however, this temporal limitation
precluded any prediction in the so-called initial period of the decay. Here, we follow
the classification of stages of freely decaying HIT. It includes the early and late phases,
during which the nonlinear term is negligible, and the initial period, during which the
nonlinear term is relevant and the energy power spectra are self-similar (Batchelor
1967). Incidentally, the ‘final period’ of decay of MHD turbulence was considered by
Lehnert (1955).

Moffatt’s (1967) prediction was tested by Schumann (1976) with DNS. He solved
the linearized and fully nonlinear MHD equations of motion over a period of two
eddy turnover times for N = 0, 1, 5, 50; the spatial resolution was limited to 323

Fourier modes. Although the linear approximation was found to be qualitatively valid,
it underestimated the effect of B0, even within the first eddy turnover time. As for the
dimensionality of the flow, Schumann (1976) concluded that a quasi- but not perfect
two-dimensional state could be achieved. This remark was based on the observation
that at the end of the simulation, the derivative skewness did not approach zero (as
in two-dimensional turbulence).

Kolesnikov & Tsinober (1972) were the first to experimentally investigate the decay
of velocity fluctuations in duct flow. The fluid (mercury) was pushed through a grid
consisting of parallel bars aligned to the external magnetic field. Measurements of
the streamwise velocity component (hence perpendicular to B0) and of the scalar
diffusion from a point source were reported. Without magnetic field, the streamwise
velocity was rather uniform in the lateral direction, as in classical grid turbulence
experiments. The velocity isotropy, which might have been biased by the parallel bars



504 P. Burattini, O. Zikanov and B. Knaepen

arrangement, was not documented. Kolesnikov & Tsinober (1972) concluded that the
magnetic field slowed down the decay rate of the velocity fluctuations and rendered
the scalar transport anisotropic. Furthermore, the transport increased in the direction
perpendicular to B0.

Alemany et al. (1979) carried out an in-depth investigation of MHD grid turbulence.
Their case is the experimental analogue of the present simulations and therefore is
described in some detail here. The set-up consisted of a biplane grid moving in one
direction inside a column of still mercury. Such arrangement is equivalent to that in
grid turbulence experiments (e.g. Comte-Bellot & Corrsin 1971), with the difference
that in the latter, the grid is stationary and the fluid is moved by a fan. The mercury
was immersed in a uniform magnetic field, parallel to the direction of grid motion.
Different values of B0 were tested, with N varying from 0.1 to 1.36. The velocity
parallel to B0 was measured at several distances x from the grid, ranging from 0 to
19 mesh sizes M . Alemany et al. (1979) found that following the application of the
magnetic field, the decay exponent m of the power law u′2 ∼ x−m (u′ is the velocity
fluctuation r.m.s.) increased to 1.7, from m = 1 at B0 = 0. Furthermore, m was almost
independent of N . Remarkably, the effect of B0 on the decay was opposite to that
found by Kolesnikov & Tsinober (1972).

The dimensionality of MHD turbulence was considered by Sommeria & Moreau
(1982) (see also Moreau 1990). They tried to reconcile the disagreement between
earlier observations in duct flow and grid turbulence of Alemany et al. (1979). In
the first case, the flow was substantially two-dimensional – the fluctuating velocity
component parallel to B0 being much smaller than the other two – while in the
second case the fluctuations were rather three-dimensional. The proposed explanation
hinged on the effect of the boundary conditions at the electrically insulating walls of
the duct. Similar arguments were proposed by Müller & Bühler (2001), who reviewed
the available data on grid turbulence in the presence of a magnetic field.

Small-scale properties of homogeneous MHD turbulence were considered by
Zikanov & Thess (1998). They reported DNS results for the turbulent flow in
a periodic box with large-scale forcing. The main goal was to understand the
transformation of statistically steady turbulence under the impact of an imposed
magnetic field. The results showed, inter alia, an intermittency between two-
dimensional and three-dimensional states. A similar configuration of statistically
stationary turbulence was used by Vorobev et al. (2005), who performed both direct
and large-eddy simulations (LES). The focus was on local anisotropy, which was
quantified by examining some of the components of the dissipation rate tensor.
Albeit the distribution of the Reynolds stress anisotropy invariants was also briefly
discussed, the conclusions on that point could not be considered conclusive, since the
forcing must have had a significant role in the invariants behaviour.

Knaepen & Moin (2004) performed LES and DNS of decaying homogeneous
MHD turbulence and showed that the magnetic field advanced to earlier times the
beginning of the decay of the total kinetic energy. This effect is consistent with the
nature of the Joule dissipation, which acts immediately at all scales and does not
require the development of small-scale structures through the turbulent cascade. They
also visualized, for large values of N, the tendency towards two-dimensionality –
with the parallel fluctuating component of the velocity tending to zero – and
consequent anisotropy of the velocity components. Detailed decay properties (e.g.
the power-law exponent) were not reported, as the main objective was to assess
LES against DNS. In this respect, the validity of the dynamic Smagorinsky model
for simulating temporally decaying MHD turbulence was ascertained. Very recently,
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Ishida & Kaneda (2007) (see also Burattini et al. 2008b) investigated the spectral
scaling properties of turbulence at small values of N . Assuming that the magnetic
field introduced only a small perturbation to the scales within the inertial range,
these authors argued that the modified scaling range had a slope of −7/3 (instead
of Kolmogorov’s −5/3). This was supported by DNS data at N = 1 obtained with
large-scale forcing.

A different view of decaying MHD turbulence was taken by Davidson (1995, 1997)
(see also Davidson 2001). He analysed a flow in a sphere, assuming that viscous
dissipation was negligible compared to Joule dissipation. Under this condition, the
component of the global angular momentum of the flow parallel to the magnetic field
is conserved, which imposes a lower limit on the total energy of the system. This implies
that the flow decays towards a condition of zero Joule dissipation, for which the flow
variables are uniform along the magnetic field lines (two-dimensional state). Davidson
(1997, 2001) also proposed an analogue of the Kolmogorov decay law for MHD
turbulence at low Rm. The theory presupposes that viscous and Joule dissipations
are respectively proportional to u′3/L⊥ and u′2(L⊥/L‖)

2/τ . Here, L⊥ and L‖ are the
relevant length scales across and along the magnetic field, and τ is the magnetic
damping time. His analysis suggests that u′2L‖L

4
⊥ is invariant during the decay,

similarly to the so-called Loitsyansky’s invariant in homogeneous isotropic turbulence.
This theory reproduces the decay law u′2 ∼ t−1/2 of the linear model of Moffatt (1967)
for N � 1, when the viscous dissipation is neglected. It also yields Kolmogorov’s
decay law u′2 ∼ t−10/7 for N � 1. However, at intermediate values of N , where both
viscous and Joule dissipations are significant, no general power law can be identified.

Regarding the decay of MHD turbulence at low Rem, there is presently a gap
between theoretical results and available experimental data (Moreau, Thess &
Tsinober 2007): the first apply to large values of Rλ (the Reynolds number based on
the Taylor microscale) and N , while the second are limited to moderate values of both
parameters. Further, the present linearized theory strictly refers to the early or final
stages of the decay, while empirical data were taken in the initial decay. Numerical
simulations are therefore essential to close the gap between different regimes and
elucidate the behaviour of decaying MHD turbulence in its entirety. The aim of our
study is to provide a detailed analysis of the decay of MHD turbulence. LES in a box
with periodic boundaries are performed. Using a sufficiently large box, we minimize the
effect of the boundary conditions and achieve a close approximation of homogeneous
turbulence. Flows with moderate values of Rλ and fairly large values of N are
obtained. Among other results, our study clarifies the apparent contradictions between
the experimental observations of Kolesnikov & Tsinober (1972) and the development
of the anisotropy, as predicted by the linear theory at large and small scales.

The results presented in the following are valid under the quasi-static approximation
and therefore for low magnetic Reynolds numbers. It should be said, however, that
our case displays some qualitative similarities with MHD turbulence at high magnetic
Reynolds numbers. The latter has been intensively studied in astrophysics and
geophysics. For example, the seminal work of Shebalin, Matthaeus & Montgomery
(1983), later confirmed by three-dimensional simulations of Oughton, Priest &
Matthaeus (1994) and Matthaeus et al. (1996), showed that the kinetic energy
spectrum becomes anisotropic, with the modes with wave vectors perpendicular to the
magnetic field carrying more energy. A second point of contact may be established
with dynamos, where the magnetic Reynolds number is moderately large while the
magnetic Prandtl number is small. Recent developments have been discussed by
Ponty et al. (2005) and Mininni (2007). The results reported here could reproduce,
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admittedly with some simplification, certain features of turbulent dynamos at length
scales below the diffusive cut-off scale of the magnetic field.

The paper is organized as follows: after introducing the problem in § 2, the numerical
method and the details of the initial conditions are given in § 3. The discussion of
the results (§ 4) concerns the kinetic energy (§ 4.1), its dissipation rates (§ 4.2) and the
velocity spectra (§ 4.3). Conclusions are summarized in § 5.

2. Problem specification
The evolution of incompressible homogeneous MHD turbulence under the effect

of a uniform external magnetic field B0 of intensity B0 and direction x3 is described
by (see Roberts 1967)

∂tui + uk∂kui = − 1

ρ
∂ip + ν∂2

k ui − σB2
0

ρ
∂−2

k ∂2
3ui, (2.1)

∂iui = 0. (2.2)

Here, u = (u1, u2, u3) is the velocity, p the sum of the kinematic and magnetic
pressure, σ the electrical conductivity, ρ the fluid density, ν the kinematic viscosity
and ∂−2

k the formal inverse of the Laplacian operator ∂2
k . It is assumed that the initial

flow field has zero mean velocity and shear. In (2.1), the rightmost term is the Lorentz
force expressed via the quasi-static approximation. The evolution equation of the
Reynolds stress tensor is derived from (2.1) by multiplication by uj , space averaging
and symmetrization

d

dt
ujui = − 1

ρ
p(∂iuj + ∂jui)︸ ︷︷ ︸

Pij

− 2ν(∂kuj∂kui)︸ ︷︷ ︸
ενij

− σB2
0

ρ

(
uj∂

−2
k ∂2

3ui + ui∂
−2
k ∂2

3uj

)
︸ ︷︷ ︸

εJij

. (2.3)

Hereafter, summation is implied over the same index (unless otherwise stated), the
overbar denotes averaging over the homogeneous directions and the explicit time
dependence is dropped most of the times. The three tensors Pij , ενij

and εJij
represent

the effect of the pressure–rate-of-strain correlation, viscous dissipation and Joule
dissipation. The trace of (2.3) yields the equation for the turbulent kinetic energy
K = uiui/2, i.e.

d

dt

1

2
uiui︸ ︷︷ ︸
K

= −ν(∂kui∂kui)︸ ︷︷ ︸
εν

− σB2
0

ρ

(
ui∂

−2
k ∂2

3ui

)
︸ ︷︷ ︸

εJ

. (2.4)

Thus, the temporal decay of K is due to the Joule dissipation rate εJ and the viscous
dissipation rate εν . The latter can be equivalently expressed by

εν = 2νsij sij = 1
2
ν(∂jui + ∂iuj )2, (2.5)

where sij = 1/2(∂jui + ∂iuj ) is the fluctuating rate-of-strain tensor (e.g. Pope 2000).
The kinetic energy budget in spectral space is

∂tΦij (k) = Tij (k) − 2

(
νk2 +

σB2
0

ρ

k2
3

k2

)
Φij (k) , (2.6)

where Φij (k) is the spectral tensor (e.g. Batchelor 1967), related to the ensemble
average of the product ûi (k) û∗

j (k). Here, the hat represents the Fourier transform,
the asterisk denotes (here only) complex conjugate and k is the wavenumber vector
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of modulus k. Tij (k) is the nonlinear transfer tensor and k2
3/k2 = cos2 (ψ), with ψ

being the angle between B0 and k. From (2.6), it is clear that if Φij (k) is initially a
diagonal tensor (in a suitably chosen frame of reference), it remains so at all times.
This is analogous to initially isotropic turbulence subject to rotation: the off-diagonal
components of Φij remain zero, while its normal components are being redistributed
(e.g. Mathieu & Scott 2000).

From the shell average of Φii (k), one obtains the three-dimensional spectrum of
the kinetic energy:

E (k) = k2

∫ π

0

∫ 2π

0

Φii (k, ϕ, ψ) dϕ sin (ψ) dψ, (2.7)

where (k, ϕ, ψ) are the variables in the spherical coordinate system in spectral space;
the three-dimensional spectrum Ei (k) of the ith component can be derived similarly.
Plane averaging of Φii yields one-dimensional spectra. For example, for i = 1,

φ11 (k1) =

∫ ∫ ∞

−∞
Φ11 (k1, k2, k3) dk2 dk3. (2.8)

Note that

u1u1

2
=

∫ ∞

0

E1 (k) dk =

∫ ∞

0

φ11 (k1) dk1, (2.9)

and

εν1 = 2ν

∫ ∞

0

k2E1 (k) dk. (2.10)

The importance of the last term in (2.1) with respect to inertia is quantified by the
magnetic interaction parameter

N =
σB2

0

ρ

L

(2K/3)1/2
, (2.11)

where

L =
3π

4K

∫ ∞

0

E (k)

k
dk (2.12)

is the integral length scale. As in other works (e.g. Schumann 1976; Zikanov & Thess
1998; Vorobev et al. 2005), in (2.11) L is estimated from the isotropic flow, before
applying B0. In homogeneous anisotropic turbulence, it is also useful to define the
one-dimensional integral length scale (e.g. Mathieu & Scott 2000, p. 273):

Li =
π

u2
i

φii (ki = 0) (2.13)

(no implied summation here); in HIT, L ≡ Li . Note that, in the literature (e.g.
Pope 2000), the one-dimensional spectrum is sometimes defined as φ

[1]
11 = 2φ11, and

therefore there is a factor 2 in the denominator of Li . The interaction parameter can
also be expressed as the ratio

N = T/τ (2.14)

of the eddy turnover time

T =
L

(2K/3)1/2
(2.15)
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to the magnetic damping time

τ =
ρ

σB2
0

. (2.16)

In the following, the asterisk indicates normalization of time by T . The turbulence
intensity can be quantified by the Taylor microscale Reynolds number:

Rλ =

√
15

νεν

2K

3
. (2.17)

Schumann (1976) suggested that, instead of Rλ, the Reynolds number based on the
integral length scale L

RL =
(2K/3)1/2 L

ν
(2.18)

should be considered. This approach is justified, since the large scales substantially
contribute to the Joule dissipation, which strongly affects the decay when N is large.
Without magnetic field, Schumann (1976) had RL = 60 and Rλ = 43. Alemany et al.
(1979) provided the Reynolds number based only on the mesh size:

RM =
u′M

ν
, (2.19)

where u′ was extrapolated to the virtual origin of the grid. In the experiment, RM

ranged from 750 to 9000. In order to estimate the corresponding value of Rλ, one can
assume that L (t = 0) � M and that the kinetic energy dissipation rate coefficient

Cε =
ενL

u′3 (2.20)

is equal to 1. The result is that

Rλ =

√
15

νεν

u′2 =

√
15Lu′

νCε

, (2.21)

or

Rλ =
√

15RM, (2.22)

which yields values ranging from 106 to 367.
Before presenting our numerical results, it is worth recalling a few known features

of the damping mechanism in MHD turbulence. Let us consider the spectral form of
the Joule dissipation in (2.6):

2
σB2

0

ρ
cos2 (ψ) Φij (k). (2.23)

Since the coefficient in front of Φij (k) is independent of the wavenumber k, the bulk
of Joule dissipation corresponds and applies to the energy containing range of scales.
Unlike the small scales, which require the development of the energy cascade, the
large scales are present at the beginning of the decay and so is the magnetic damping.
It is also evident from (2.23) that Joule dissipation is larger for small values of ψ .
As a result, one expects that the turbulent energy would be selectively depleted from
the region near the k3 axis, parallel to the magnetic field. Following this reasoning,
Sommeria & Moreau (1982) conjectured that for N � 1 and at the dynamical
equilibrium, the turbulent energy would concentrate outside the cone defined by
ψ = π/2 − N−1/2. Although this picture may be overly simplified, it nonetheless
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suggests that as N increases, the dependence of the velocity field on the k3 direction is
attenuated, possibly leading to a two-dimensional velocity field (Alemany et al. 1979).

Much less is known about the other type of anisotropy, that between the velocity
components (i.e. in terms of the Reynolds stress tensor). The development of this
anisotropy during the entire decay has never been documented. Moffatt’s (1967) result
provides an answer that applies only to the linear regime for N � 1. His derivation
is repeated here, as it will be useful in the following. From (2.6), by neglecting the
nonlinear and viscous terms, one has

∂tΦii (k,t)
.
= −2

τ
cos2 (ψ) Φii (k,t) (2.24)

(no implied summation here) whose solution is

Φii (k,t)
.
= Φii (k,0) exp

(
−2 cos2 (ψ)

t

τ

)
. (2.25)

By hypothesis, the initial velocity field ûi (k,0) is isotropic and therefore its spectral
tensor can be written as

Φij (k,0) =
E (k, 0)

4πk2

(
δij − kikj

k2

)
. (2.26)

In particular, the parallel and perpendicular components are (Schumann 1976)

Φ‖ (k,0) =
E (k, 0)

4πk2
sin2 (ψ) , (2.27)

Φ⊥ (k,0) =
E (k, 0)

4πk2

1

2
[1 + cos2 (ψ)]. (2.28)

(Hereafter, a quantity in the direction parallel to B0 is denoted by the subscript ‖,
while the subscript ⊥ indicates the average of the same quantity along the other two
directions.) By virtue of (2.25), integration of Φ‖ (k,t) and Φ⊥ (k,t) yields

u2
‖ (t/τ )

u2
⊥ (t/τ )

.
=

∫ π

0

sin3 (ψ) exp
[
−2 cos2 (ψ)

t

τ

]
dψ∫ π

0

1
2

[
1 + cos2 (ψ)

]
sin (ψ) exp

[
−2 cos2 (ψ)

t

τ

]
dψ

, (2.29)

independently of the initial energy spectrum E (k, 0). For t/τ � 1 (but t/T �1 for
the linear approximation in (2.24) to be valid), one obtains

K‖ = 2K⊥. (2.30)

Moffatt (1967) refers to this as the channelling of the kinetic energy into the parallel
velocity component.

3. Numerical method and initial conditions
Equations (2.1) and (2.2) are solved in a domain with periodic boundary conditions

using the LES approach. Details of the method are given in Knaepen, Kassinos &
Carati (2004) and only a brief description is provided here. The nonlinear term is
evaluated in physical space while the other terms in Fourier space; aliasing errors
are removed using the 2/3 algorithm. Time advancement is performed with a third-
order, low-storage Runge–Kutta integration scheme (Williamson 1980). The effect
of the small scales on the resolved field is accounted via the Smagorinsky method
using the dynamic procedure of Germano et al. (1991), as modified by Lilly (1992),
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Cases Resolution L1 × L2 × L3 Rλ (0) RL Si (0) Cε

N = 0, 0.5, 1, 3 128 × 128 × 128 2π × 2π × 2π 170 1000 −0.44 0.49
N = 0, 10, 50 128 × 128 × 512 2π × 2π × 8π 168 985 −0.45 0.47

Table 1. Main properties at initial conditions (zero magnetic field). In all cases, the viscosity
ν is 0.0003.

in order to determine the volume-averaged Smagorinsky constant C at each time
step. In previous work (Knaepen & Moin 2004; Knaepen et al. 2004; Vorobev et al.
2005), it was verified with the help of DNS data that the dynamic model accurately
describes MHD turbulence. Under the quasi-static approximation, the Lorentz force
is a linear function of the velocity and therefore commutes with the LES filtering. As
a consequence, this approach does not require explicit modelling of the effect of the
magnetic field on the subgrid-scale term. The viscous dissipation rate εν is given by
the sum of the contributions from the resolved velocity field εr and the unresolved
subgrid-scale motion εs , i.e.

εν = εr + εs. (3.1)

Table 1 lists the main flow properties at the initial state. In addition to HIT (i.e.
N = 0), five values of N are considered. The initial velocity field computed for
N = 0 is used for all runs. In order to closely replicate the experimental conditions of
Alemany et al. (1979), the magnetic field is applied directly to the initialized velocity
field, without a preliminary period of decay. In the experiment, the grid was dragged
within the region of fluid surrounded by the magnet.

The numerical domain is either a cube or, for the cases with larger N , a
parallelepiped with the dimension (L3) in the direction of B0 four times larger
than the other dimensions (L1, L2). This stretching allows longer runs, before the
assumption of periodic boundaries becomes questionable due to the preferential
elongation of the turbulent structures in the direction of B0. In all cases, the small-
scale resolution is unchanged. The importance of an adequate resolution of the energy
containing range and the effect of the boundary condition in the decay of HIT was
underlined by Wang & George (2002) and other authors. In particular, Pope (2000)
suggested that for the periodic boundary conditions to be a valid approximation,
L should be less than L/8. In the present anisotropic case, L‖ approaches the box
size L‖ = L3 before L⊥ nears L⊥ = L1 = L2, and therefore we safely impose that
max(L‖) � L‖/10.

In table 1, Cε = ενL/u′3 is the dissipation-rate coefficient. Its value is close to 0.5,
consistent with the present value of Rλ (0) (e.g. Burattini, Lavoie & Antonia 2005).
The velocity derivative skewness

Si =
(∂iui)

3

(∂iui)
2
3/2

(3.2)

(no implied summation here), which is a signature of the nonlinear term, is initially
equal to −0.44. This is obtained by allowing a preliminary iterative correlation of the
phases of the Fourier modes. The procedure consists of computing the nonlinear term,
advancing the solution and rescaling back the velocity field to the initial spectrum.
Without this procedure, the initial Smagorinsky constant is zero and the flow takes
longer to achieve the canonical decay.
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Figure 1. Initial velocity spectrum, as defined by (3.3). Inset: spectrum plotted in
linear scales.

The initial velocity spectrum is defined by

E(k, 0) = k−5/3

[
kL[

(kL)4 + CL

]1/4

]5/3+p0

, (3.3)

where p0 (=4) is the slope at low k, the exponent −5/3 accounts for the inertial range
and

CL =

[
CK

∫ ∞

0

yp0

[y4 + 1]5/12+p0/4
dy

]6

(3.4)

follows from the definition of the integral scale (2.12). In (3.4), CK = 1.5 is the
Kolmogorov constant and y is a dummy integration variable. The distribution of
(3.3), plotted in figure 1, is a slight modification of that in Pope (2000), the former
having a faster transition between the k4 and the k−5/3 regime. From (3.3), the
maximum of the spectrum (3.3) is at the wavenumber

kp =
1

L

4

√
3

5
p0CL = 20. (3.5)

See the inset of figure 1.

4. Results
4.1. Turbulent kinetic energy

Figure 2 reports the decay of K at different values of N . For the hydrodynamic case,
the profile is rather flat until, for t∗ � 1, viscous dissipation starts acting at the small
scales that are populated through the cascade. Compared to N = 0, the primary effect
of B0 is to shift the beginning of decay to an earlier time, especially at the largest
values of N . This is due to the Joule dissipation, which acts immediately at all scales.
Despite early differences, the distributions with B0 �= 0 tend to converge at large
times.
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Figure 2. Decay of the turbulent kinetic energy at different values of the interaction
parameter.
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Figure 3. Decay of the turbulent kinetic energy of the parallel and perpendicular velocity
components. Distributions of K⊥ are shifted upwards by 20 units. Inset: ratios of the kinetic
energy components.

In § 1, we noted that available experiments reported the decay of either K‖ or K⊥.
Figure 3 shows that for any given value of N , the profile of K‖ differs substantially
from that of K⊥. The relative importance of the two components of K varies in
time, with K‖ and K⊥ respectively being the largest contributors of K during the
early and late stages. This is illustrated in the inset of figure 3, which shows K‖/K⊥.
The ratio is bounded from above by the value of 2. Such limit, which corresponds
to the prediction of the linear model of Moffatt (1967) (see (2.30)), is attained only
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Figure 4. Logarithmic derivative of K . IDK06 (m = 1.5) is the value computed by Ishida
et al. (2006); M67 (horizontal dashed line at m = 1/2) is the value predicted by Moffatt
(1967).

for N = 50, albeit briefly. The anisotropy of the Reynolds stress tensor is further
discussed in § 4.1.2. It is worth noting that Matthaeus et al. (1996), who performed
simulations of full MHD turbulence, showed that K⊥ exceeds K‖ at a late stage of
the decay, although only for a compressible flow.

Some parts of the curves in figures 2 and 3 seemingly display a linear trend. This
implies the establishment of a power law of the type

K = (t − t0)
−m , (4.1)

where m (>0) is the decay exponent and t0 the virtual origin. It should be stressed at
the outset that although such conclusion is supported by earlier experimental evidence
(Kolesnikov & Tsinober 1972; Alemany et al. 1979), it is not derivable analytically
for intermediate values of N – that is, when both viscous and magnetic dissipation
rates are not negligible. As remarked in § 1, in the limit cases of N � 1 and N � 1
one can respectively use the linear theory of Moffatt (1967) with m = 1/2 (but only
for τ < t < T ) and the data collected for the pure hydrodynamic case.

The validity of (4.1) in our numerical experiment is verified directly by assuming
t � t0 and estimating the logarithmic derivative

m (t) = −d ln (K)

d ln (t)
= − t

K

dK

dt
. (4.2)

If K decays according to a power law over a certain time interval, then the profile
of m(t) displays a plateau. This procedure is more reliable than fitting linearly a
curve to the data over an arbitrary range. Distributions of m computed via (4.2) are
plotted in figure 4. After an early phase, the curve for N = 0 levels off near 1.5.
This value is in close agreement with that of Ishida et al. (2006), who performed
DNS at high resolution using, like here, an initial spectrum with a k4 power law at
low wavenumbers. For the MHD cases, the decay rate is initially larger than in the
hydrodynamic case. For N = 10 and 50 and within one eddy turnover time, m displays
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Figure 5. Logarithmic derivative of K⊥. Inset: estimate of the decay exponents in the
plateau region as a function of N .
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a first plateau at m � 0.6, slightly exceeding 1/2 of the linear theory. For lower values
of N , the curves tend to level off only later and at larger values of m. At later stages,
approximately for t∗ � 1 the decay rate decreases with increasing magnetic field. Such
slowdown of the decay is similar to that imposed on homogeneous turbulence by
rigid rotation, although in this case there is no additional dissipation (e.g. Mathieu &
Scott 2000; Yu, Girimaji & Luo 2005).

As observed above, in any single previous experiment either K‖ or K⊥ was measured.
Therefore, it is useful to examine the decay exponents m‖ and m⊥ of the individual
velocity components. The results are presented in figures 5 and 6. For N = 50, both
sets of curves display the first plateau at m � 0.6. As N decreases, the regions of
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Figure 7. Integral length scale from the parallel velocity component. Horizontal dashed line
marks a tenth of the box size in the parallel direction L‖. The curves for N = 10 and 50 start
from a lower point due to the larger box size in the parallel direction.

power law of K‖ disappear, while the power-law behaviour of K⊥ becomes more
evident at later times (estimates of m⊥ in this regime are plotted in the inset of figure
5). From figures 5 and 6, one noteworthy observation can be made: at later times
the decay rate of K‖ is consistently larger than that of K⊥. This inequality reconciles
the observations of Alemany et al. (1979) and Kolesnikov & Tsinober (1972). The
first experiment provided m‖ = 1.7 (m = 1 at N = 0) for 8 � x/M � 20, while the
second experiment m⊥ = 0.23 (m = 1.4 at N � 0) for 2.5 � x/M � 40. (Kolesnikov &
Tsinober’s (1972) values have been estimated from their figures). While these values
do not precisely match those calculated here, and admittedly K‖ does not follow a
power-law decay, our results nevertheless confirm that K⊥ decays at a significantly
slower rate than K‖. This suggests that the differences between m‖ and m⊥ are intrinsic
to this homogeneous flow, and that wall effects are not essential in order to explain
the discrepancies between the two experiments.

4.1.1. Integral length scales

Figures 7 and 8 show the temporal profiles of the parallel L‖ and perpendicular
L⊥ integral length scales. The monotonic growth of L‖ compared to the rather
flat behaviour of L⊥ signifies that, as demonstrated in earlier computational and
theoretical studies, the large-scale structures elongate in the direction of B0. The
effect is quantified by the ratio L‖/L⊥ (see the inset of figure 8). Note that, before
increasing, L⊥ initially decreases slightly. Davidson (1997) remarked that in the linear-
theory framework, the validity of K ∼ t−1/2 implies that L‖/L⊥ ∼ t1/2. This prediction,
which has never been corroborated by experiments, is tested in figure 9. At large N

and for t∗ < 1, the logarithmic derivative d
[
ln

(
L‖/L⊥

)]
/d [ln (t)] indeed approaches

the value 1/2. It is worth noting that if one considered the slope of only L‖, the
exponent 1/2 would be attained at even lower values of N and over a wider time
interval, as shown in the inset of figure 9.



516 P. Burattini, O. Zikanov and B. Knaepen

10−2 10−1 100 101 102 103
10−2

10−1

t*

t*

N

 

 

0
0.5
1
3

10
50

10−2 10−1 100 101 102
0

2

4

6

8

L
 /L N

L
  /

L

Figure 8. Integral length scale from the perpendicular velocity component. Inset: ratio of
the integral length scales.

10−2 10−1 10 0 10 1 10 2
0

0.2

0.4

0.6

0.8

1.0

d[
ln

(L
  /

L
 )

]/
d[

ln
(t

)]

t*

N

 

 
0 .5
1

10
50

10
−2

10
−1

10
0

10
1

10
2

0

0.5

1.0

d[
ln

(L
)]

/d
[l

n(
t)

]

N

3
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The elongation of the turbulent structures is further illustrated in figure 10, which
reports the spatial distribution of the kinetic energy for N = 0.5. At t∗ = 0, the
contours are isotropic, while at t∗ = 8.8, and even more at t∗ = 32, the fluctuations
are elongated in the direction of B0. Note that the dimensional anisotropy of the
integral length scales occurs at significantly earlier times than the anisotropy of the
kinetic energy components. For example, at t∗ = 32 one has L‖/L⊥ = 3.6, while
K‖/K⊥ = 0.84.
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Figure 10. Contours of the kinetic energy for N = 0.5. (a) t∗ = 0; (b) t∗ = 8.8; (c) t∗ = 32.
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Figure 11. Profiles of the eddy turnover time defined with the integral length scale L⊥.

The temporal profiles of the eddy turnover time are shown in figure 11. According
to (2.14), this can also be interpreted as the instantaneous value of the interaction
parameter. In this sense, it is apparent that the effect of the magnetic field compared
to inertia becomes stronger over time. As is the case for K , the curves of the MHD
runs tend to converge, as t∗ grows.

4.1.2. Anisotropy invariants

Here, we consider the type and degree of the large-scale anisotropy of the velocity
components. This is quantified by the Reynolds stress anisotropy tensor

bij =
uiuj

uiui

− 1

3
δij , (4.3)

where δij is the Kronecker delta. It is traceless by construction and has two non-trivial
invariants: II = −bijbji/2 and III = bijbjkbki/3, the latter being the determinant of
bij (Pope 2000; Choi & Lumley 2001). Because of the definition (4.3), throughout the
decay it holds that b‖ = −2b⊥, where b‖ = b33 and b⊥ = (b11 + b22) /2. As shown in
figure 12, b‖ is initially positive and increasing, but after having attained a maximum,
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Figure 12. Components b‖ and b⊥ of the Reynolds stress anisotropy tensor. The
distributions of bij for i �= j are �0.

10
−2

10
−1

10
0

10
1

10
2

0

0.05

0.10

0.15

0.20

b

t*

N = 10

N = 1

1/ 6

Figure 13. Comparison of the temporal profile of b‖ from the analytical solution (2.29) (thin
lines) and from the numerical data (thick lines).

it decreases and becomes negative. Note that as N increases, the maximum of b‖
approaches the limit b‖∞ = 1/6, corresponding to K‖ = 2K⊥, which follows from
the linear model of Moffatt (1967). As discussed above, this stage of the decay is
identifiable with the power-law behaviour with exponent 1/2. When N = 50, the
numerical solution attains this limit, but for lower values of N , max

(
b‖

)
is a fraction

of b‖∞. This is further highlighted in figure 13, where the numerical data are compared
to the analytical solution, as per (2.29). For N = 10, the two curves are close, up to
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Figure 14. Evolution of the anisotropy factor F of the Reynolds stresses; see (4.4).

almost the asymptotic value. For N = 1, however, the development of the anisotropy
is slower in the simulation and the nonlinear effects keep b‖ away from the asymptote.

From the second and third invariants of bij , one can define the scalar function

F = 1 + 27III + 9II, (4.4)

which is an indicator of the large-scale anisotropy (Choi & Lumley 2001); F vanishes
when the Reynolds stress tensor becomes two-dimensional and is unity for isotropic
conditions (e.g. Pope 2000). The profiles of F in figure 14 have a local minimum,
corresponding to max

(
b‖

)
, followed by a maximum. Each such maximum implies a

temporary isotropic state with b‖ � b⊥ � 0 (see figure 12). At low N , the maxima are
achieved at t∗� 25. However, this condition of isotropy pertains only the kinetic energy
components, since the integral length scales L‖ and L⊥ are rather disproportionate at
this point in time (figure 8). One should therefore be careful in deducing properties
of the velocity field from the shape of the turbulent structures.

The type of anisotropy of the Reynolds stress tensor can be quantified by the
anisotropy invariant map (AIM). The map illustrates the path of the variables (η, ξ ),
which are related to the invariants by η2 = −II/3 and ξ 3 = III/2; η and ξ

respectively represent the degree and type of the anisotropy. All the possible states of
turbulence are confined inside the Lumley triangle (e.g. Choi & Lumley 2001). On the
triangle’s left side, turbulence is axisymmetric and the shape of the Reynolds stress
ellipsoid is disc-like, with one component of the turbulent kinetic energy smaller than
the other two. On its right side, turbulence is also axisymmetric but the ellipsoid is
rod-shaped, as one component of K is larger than the other two. Figure 15 shows
that turbulence is rod-shaped during the first phase of the decay. The rightmost
location of (η, ξ ) – which corresponds to max

(
b‖

)
in figure 12 – moves further left

with increasing N , but is limited by the values of the linear theory

η∞ =
(
b2

ii/6
)1/2

= (22 × 3)−1, (4.5)

ξ∞ =
(
b3

ii/6
)1/3

= (22 × 3)−1 = η∞. (4.6)
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(each shifted progressively upwards by 0.1). The arrow indicates the direction of the path;
asterisks denote the limit η∞, ξ∞.

After having reached the extremum, the flow state moves back towards the origin (the
isotropic condition), and finally follows the other straight side of the triangle, where
the Reynolds stress ellipsoid is disc-shaped (although the turbulent structures are
elongated). The final position on this triangle’s side is imposed by the computational
constraint on L‖, and it seems plausible that – if the size of the box were large enough –
the flow would reach the two-dimensional state. Vorobev et al. (2005) conducted a
similar analysis of MHD turbulence with large-scale forcing. Contrary to the present
values of (η, ξ ), which precisely follow the borders of the triangle, theirs were rather
scattered throughout the lower portion of the triangle. Most likely, this was due to
the forcing, which introduced some shear. As a consequence, no conclusion could be
drawn regarding the anisotropy of the large scales.

4.2. Mean dissipation rates

In this section, we consider the viscous and Joule dissipation rates, which, according
to (2.4), determine the decay of kinetic energy. The component due to viscosity (given
by the sum of the resolved plus subgrid-scale contributions) is plotted in figure 16.
Again, as N increases, the decay starts earlier so that, over the longer period, εν

is smaller. For the time interval considered, the ratio εν‖/εν⊥ is always >1 (inset
of figure 16). Therefore, in the initial phase, u‖ has a larger amplitude not only at
large scales (figure 3) but also at small scales. Eventually, εν‖/εν⊥ decreases, when the
fluctuations of the parallel velocity field are more damped by the magnetic field.

We have already pointed out that of the kinetic energy components, K⊥ displays
the clearest power law (figure 5). Therefore, the following analysis of the power-law
behaviour is limited to εν⊥. The results are presented in figure 17. For N = 0, one
can see that mν = m + 1 � 2.5, which is expected, since K follows a power law and
the kinetic energy budget yields εν ∼ t−m−1. For N �= 0, mν⊥ also displays a plateau
at values that decrease with N , as was the case for m⊥ in figure 5. Significantly, the
relation mν⊥ � m⊥ + 1 still holds, to a good approximation.
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Figure 17. Decay exponent of the perpendicular component of the viscous dissipation rate.
Horizontal lines in the upper right corner are at m⊥ + 1, with m⊥ estimated from the second
plateau of figure 5.

As illustrated in figure 18, the relative contributions of the subgrid-scale εs and
resolved εr motions to the viscous dissipation rate change significantly during the
decay. The first contribution, which is much larger at the beginning, eventually
becomes smaller than the second. Furthermore, the increase of the magnetic field
leads to a reduction of εr , in connection to the small-scale damping. In response to
the flow evolution, the dynamical model adapts the Smagorinsky constant (inset of
figure 18). This is maximum (C � 0.013) for N = 0 at small t∗, but decreases over
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Figure 19. Joule dissipation rate. Inset: ratio of the contributions from parallel and
perpendicular velocity components.

time and with N , reflecting a lesser contribution from the subgrid scales. A similar
behaviour was observed in other self-adapting LES of MHD turbulence (Knaepen
& Moin 2004; Vorobev & Zikanov 2008) and LES of turbulence in the presence of
strong stratification or rotation (Mathieu & Scott 2000).

The time evolution of Joule dissipation is reported in figure 19. At t = 0, when
the velocity field is isotropic at small and large scales, εJ is directly proportional to
the interaction parameter. Subsequently, the decay of εJ depends on two factors: the
decrease of kinetic energy and the rise of the velocity gradients anisotropy; see (2.6).
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Figure 20. Decay exponent of the Joule dissipation rate.

Furthermore, since the bulk of the kinetic energy is at large scales, their anisotropy will
have more impact on εJ , as opposed to the small-scale anisotropy. In figure 19, one
can see that the developing anisotropy of gradients leads to weaker Joule dissipation
in flows with stronger magnetic field.

Before discussing the decay law of the Joule dissipation, we consider the ratio of
the contributions to εJ from the different velocity components (inset of figure 19). All
distributions of εJ‖/εJ⊥ start at 1/2. Then, the ratios increase during the decay, with
case N = 50 attaining the limit of 2. These two values correspond to the isotropic
state and the prediction of the linear theory, respectively. Given the solution (2.24)
and the expression for εJ in Fourier space (2.6), the ratio can be written as

εJ‖ (t/τ )

εJ⊥ (t/τ )

.
=

∫ π

0

sin2 (ψ) cos2 (ψ) exp
[
−2 cos2 (ψ)

t

τ

]
dψ∫ π

0

1
2

[
1 + cos2 (ψ)

]
sin (ψ) cos2 (ψ) exp

[
−2 cos2 (ψ)

t

τ

]
dψ

. (4.7)

At t/τ = 0 in isotropic turbulence, the ratio becomes

εJ‖

εJ⊥

∣∣∣∣
t=0

=
1

2
, (4.8)

while for t/τ = ∞
εJ‖

εJ⊥

∣∣∣∣
t=∞

= 2. (4.9)

Like (2.30), (4.8) and (4.9) are independent of the initial conditions of the velocity
field. As observed for the kinetic energy component, deviations from (4.9) are inherent
to the nonlinear evolution of the flow.

The decay exponents of εJ , εJ⊥ and εJ‖ are plotted in figures 20–22. Similarly to
the other two terms of the kinetic energy budget, εJ and more especially εJ⊥ display
a power law. Accordingly, at later times the exponent mJ⊥ closely matches mν⊥ and
(m⊥ + 1). This observation allows some general conclusions regarding the kinetic
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Figure 21. Decay exponent of the perpendicular component of the Joule dissipation rate.
Horizontal lines on the right side are at m⊥ + 1, with m⊥ estimated from the second plateau
of figure 5.
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Figure 22. Decay exponent of the parallel component of the Joule dissipation rate. Horizontal
lines on the right side are at m⊥ + 1, with m⊥ estimated from the second plateau of figure 5.

energy budget. At intermediate values of N and large times, all three terms should be
taken into account in the kinetic energy budget of the perpendicular component, i.e.

d

dt
K⊥ = −εν⊥ − εJ⊥. (4.10)

The power law

K⊥ ∼ t−m⊥ (4.11)
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Figure 23. Ratio of Joule to viscous dissipation: perpendicular component.
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Figure 24. Ratio of Joule to total viscous dissipation: parallel component.

is possible only if

εJ⊥ ∼ t−m⊥−1, (4.12)

εν⊥ ∼ t−m⊥−1. (4.13)

The last two relations imply that the ratio εJ⊥/εν⊥ is constant. This can be verified
directly from the numerical data, as illustrated in figure 23. For t∗ > 10, the ratios
converge towards a constant value, which, remarkably, is of order 1 for all the cases.
Furthermore, figures 24 and 25 show that such equilibrium is also achieved by the
parallel component, and therefore by the sum of the two components. It can be
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argued that since εν‖ does not clearly display a power law, its establishment is only a
sufficient but not a necessary condition for the equilibrium. By recognizing that the
ratio εJ /εν has the form of the square of the Hartmann number Ha, one concludes
that within the time interval considered but irrespective of the value of N , the flow
evolves towards a condition of Ha of order unity. This represents an equipartition of
the dissipations.

4.2.1. Anisotropy invariants

We conclude the analysis of the dissipation terms by considering their invariants.
Similarly to the anisotropy at the large scales, the type and degree of anisotropy at
small scales can be described by the anisotropy tensor of the viscous dissipation

dνij
=

ενij

2εν

− 1

3
δij , (4.14)

which is traceless and has two non-trivial invariants 6η2
ν = dνij

dνji
and 6ξ 3

ν = dνij
dνjk

dνki
.

Figure 26 indicates that the small-scale fluctuations depart from isotropy, as the
magnetic field intensifies. This lack of ‘local isotropy’ is evidently one of the reasons
why the phenomenological arguments of Kolmogorov are inapplicable to MHD turbu-
lence. Comparing the curves of dνij

with those of bij in figure 12, one sees that the peak
of anisotropy occurs earlier in time for the large scales compared to the small scales.
By the time when bij is temporarily back to the isotropic condition, the small scales
are strongly anisotropic. This lag between the two phases suggests that the transfer of
energy between different velocity components takes place at different time scales de-
pending on the length scale. For completeness, the AIM of dνij

is reported in figure 27.
The anisotropy tensor of the Joule dissipation

dJij
=

εJij

2εJ

− 1

3
δij (4.15)

is shown in figure 28. Unlike bij , dJ‖ can intersect the axis of isotropy twice, or never
if N is small. The asymptotes for t → 0 and t → ∞, obtained from (4.8) and (4.9), are
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dJ‖0 = 1/15 and dJ‖∞ = 1/6. As illustrated in figure 28, the second limit is reached
only at N = 50.

The AIM of dJij
(figure 29) is constrained to the straight sides of Lumley triangle

with the two limiting positions (corresponding to the asymptotes):

ηJ0 =
(
d2

Jii
/6

)1/2
= 1/15, (4.16)

ξJ0 =
(
d3

Jii
/6

)1/3
= −1/15, (4.17)

and
ηJ∞ = ξJ∞ = (22 × 3)−1, (4.18)

which are identical to (η∞, ξ∞).
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A different view on the small-scale anisotropy is provided by the ratios of the
derivatives (e.g. Vorobev et al. 2005; Vorobev & Zikanov 2008)

Gii =
1

2

(∂3ui)
2

(∂iui)
2
, i = 1, 2, (4.19)

G3i = 2
(∂3u3)

2

(∂iu3)
2
, i = 1, 2, (4.20)
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Figure 30. Coefficients of the gradients anisotropy; see (4.21).

which are unitary in isotropic turbulence (e.g. George & Hussein 1991). The single
terms of (4.19) and (4.20) correspond to the derivative at the origin of the longitudinal
and transverse structure functions of order 2. As in Vorobev et al. (2005), we consider
the average

G =
G22 + G32

2
, (4.21)

which are presented in figure 30. In agreement with the approach towards a two-
dimensional turbulent state observed before, all distributions tend to zero. In previous
work at moderate values of N (Zikanov & Thess 1998), where turbulence was forced,
the temporal profiles of G displayed a quasi-periodic behaviour, with bursts at high
intensity followed by quiescent intervals. No such intermittency is observed in the
present simulations of decaying turbulence.

4.2.2. Derivative skewness

In hydrodynamic turbulence, the skewness of the velocity derivative quantifies the
importance of the nonlinear term with respect to viscous dissipation. This is evident
from its definition in spectral space:

S = −3 × 301/2

14

∫ ∞

0

k2T (k) dk[∫ ∞

0

k2E (k) dk

]3/2
, (4.22)

which involves the nonlinear transfer. Figures 31 and 32 report the skewness of
the three velocity components computed according to (3.2). Whereas S⊥ and S‖ are
� −0.5 throughout the decay for N = 0 (as is typical of HIT at the current values
of Rλ; Burattini, Lavoie & Antonia 2008c), for N > 0 both coefficients tend to zero
at sufficiently large times, with increasing N . However, there are differences as well:
while S⊥ always increases monotonically, the behaviour of S‖ depends markedly on
the value of N . When this is small, S⊥ has a local minimum, which disappears at
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large N . The fact that at low N , the nonlinear effects are stronger for u‖ than u⊥
is consistent with the larger variation experienced by the parallel component of the
kinetic energy. For example, at N = 1, m‖ (figure 6) takes a wider range of values,
compared to m⊥ (figure 5), and therefore u‖ seemingly experiences a larger nonlinear
transfer among the length scales. Schumann (1976) showed that the skewness defined
as in (4.22) was substantially unaffected by N , when this was � 50. However, his
time of application of B0 was rather short (0.4 < t∗ < 1.2). Crucially, the present
simulations show that both S⊥ and S‖ tend to zero at sufficiently large times. The
absence of this trend was interpreted by Schumann (1976) as the persistence of three-
dimensional features of the flow. Note that in the forced MHD turbulence, which is
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statistically stationary, the difference between S⊥ and S‖ might be smaller. For N = 1,
Ishida & Kaneda (2007) reported a value of � −0.2 for both components, while
Kinet et al. (2008) obtained S‖ = −0.41 and S⊥ = −0.54.

4.3. Spectra

Further insight into the evolution of the kinetic energy components is provided by
the one-dimensional spectra defined by (2.8). Their typical behaviour is illustrated in
figure 33 for N = 0.5 (at larger N , results are qualitatively similar). Over time, as
the flow is affected by Joule dissipation, both φ⊥ and φ‖ are attenuated at large k.
This phenomenon has been observed in earlier simulations, e.g. Schumann (1976) and
Zikanov & Thess (1998). However, the present results further show that the reduction
is faster for φ‖ than for φ⊥ (i.e. φ‖/φ⊥ < 1 at large k; see the inset of figure 33).
Note that this is nonetheless consistent with the relation εν‖ > εν⊥ (figure 16) because
for the three-dimensional spectra – which directly yield the dissipation components
via (2.10) – it holds that E‖/E⊥ > 1 at large k. As noted in Burattini et al. (2008a),
this difference between one-dimensional and three-dimensional distributions follows
directly from the type of anisotropy induced by the magnetic field.

The one-dimensional spectra of MHD turbulence are often inspected to verify the
presence of the k−3 power law. Alemany et al. (1979) derived such law assuming that
at each wavenumber, there exists a quasi-equilibrium between Joule dissipation and
angular energy transfer in spectral space, for both φ‖ (k) and φ⊥ (k). While earlier
experimental results (Kolesnikov & Tsinober 1972; Alemany et al. 1979) performed
at low N seemed to support this prediction (although the two components were never
measured simultaneously), more recent simulations (Ishida & Kaneda 2007; Burattini
et al. 2008b) and experiments (Eckert et al. 2001) have questioned such behaviour.
Figures 34 and 35 show that for N = 0.5 and 10, the compensated spectra have
varying slopes but neither displays a robust plateau. The lack of support for the k−3
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law is perhaps not surprising. The arguments of Alemany et al. (1979) neglect viscous
dissipation, while in reality, as illustrated in figure 23, the viscous and magnetic
dissipation rates tend to be of the same order of magnitude at later stages of the
decay.
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For axisymmetric turbulence, the one-dimensional spectra provide only a partial
description of the kinetic energy spectral distribution. Two-dimensional spectra, which
do not suffer from the same limitation, are considered next. The two-dimensional form
of Φii (k) is given by

Φii (k, ψ, t) =
1

2π

∫ 2π

0

Φii (k, ϕ, ψ, t) dϕ, (4.23)

where the averaging (denoted by the overbar) is carried out over the homogeneous
direction ϕ (figure 36a). In the following, the geometrical dependence on ψ of the

spectra is eliminated by the transformation Φ
†
ii = Φii/ sin(ψ). In the isotropic case,

the contours of Φ
†
ii thus become arcs of a circle; see figure 36(b).

Figure 37 presents the two-dimensional spectra computed at different times for
N = 0.5. One can see that the initial distribution of Φ

†
⊥ is rapidly eroded near the k‖

axis (where most of its energetic content is initially localized) by the applied magnetic
field. Conversely, at small times Φ

†
‖ is relatively unaffected. As time increases, the two

sets of contours converge to a similar shape. At t∗ = 81, the characteristics of both
Φ

†
⊥ and Φ

†
‖ resemble the eigenfunctions of the total (viscous and Joule) dissipation in

the linear problem given by

f (k) = cνk2 +
σB2

0

ρ

k2
3

k2
. (4.24)

These are plotted in figure 38 as a function of k⊥ = k sin (ψ) and k‖ = k cos (ψ)
and divided by sin(ψ). The properties of (4.24) have been studied by Pothérat &
Alboussière (2003), who showed that the least dissipative modes of the flow are
located within the curves f (k)=const. Dymkou & Pothérat (2008) suggested that the
iso-contours of the two-dimensional energy spectra of the full nonlinear problem tend
to follow the same curves, which is confirmed by the present results.

Figure 37 prompts a comment on a commonly accepted picture of decaying MHD
turbulence. After Moffatt (1967), it is often stated (e.g. Davidson 1997) that following
the application of B0, the kinetic energy is ‘channelled’ into the parallel component.
This statement can be misleading as it suggests that the K⊥ component loses energy to
the benefit of K‖. In reality, as shown by the present simulations, the latter component
remains relatively unaffected by the sudden application of B0, whereas K⊥ is strongly
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Figure 37. Contours of (a) log Φ
†
⊥ and (b) log Φ

†
‖ at different times during the decay;

N = 0.5. Time increases from top to bottom (0 < t∗ < 81).

suppressed during the initial stage. The apparent growth of K‖ is relative only to the
behaviour of K⊥.

The two-dimensional distributions of the Joule dissipation are strictly related to

those of Φ
†
⊥ and Φ

†
‖. Their evolution, reported in figure 39, highlights the large-scale

nature of εJ and the increasing similarity between the two velocity components. It is
also evident that the maximum of εJ shifts towards larger values of ψ , as the energy
near k‖ is being dissipated. This gradual shift suggests that the concept of a stationary
dissipation cone is inapplicable in the case of decaying turbulence.

5. Conclusions
The first conclusion of this study is that the decay follows a complex path that

cannot be fully described by any of the existing theoretical models. In particular,
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our simulations show that the linearized behaviour, which was earlier considered by
Moffatt (1967) and computed by Schumann (1976), is followed only for a short time.
We find that the nonlinear effects rapidly dominate (after one eddy turnover time)
the flow evolution. As a consequence, the repartition of the kinetic energy between
the velocity components quickly becomes the opposite of that suggested by the linear
theory.

Regarding the establishment of the initial power law for the decay of the kinetic
energy, our results confirm the validity of the t−1/2 decay. The data also show
that later, in the nonlinear regime, the velocity components in the direction parallel
and perpendicular to the magnetic field decay at different rates. This reconciles the
apparent discrepancies between earlier experiments in grid turbulence.

As an entirely new and rather unexpected result, we observe that at the late stages
of the decay, approximately after 10t∗, the flow evolves into a state in which the
viscous and Joule dissipation rates are nearly equal and only weakly sensitive to the
strength of the magnetic field. The existence of such a ‘nearly universal’ state with
equipartition between the viscous and Joule dissipation rates may serve as a basis for
the development of theories of MHD turbulence decay.

From the computational point of view, we conclude that dynamic LES can be a
useful tool for simulating MHD turbulence at low Rem and large N . In fact, since
Joule dissipation introduces a sink of the energy proportional to the amplitude of
the velocity fluctuation at each wavenumber, overall the large scales are a significant
contributor to the kinetic energy dissipation. Consequently, as the role of the energy
cascade is less dominant compared to hydrodynamic turbulence, small-scale modelling
can save substantial computational resources.

Although the present flow remains overall axisymmetric and shearless throughout
the decay, the anisotropy of the small and large scales is rather different. In
inhomogeneous flows, such as the plane channel without magnetic field, the off-
diagonal components of the Reynolds stress tensor are non-zero. However, the small
scales are nearly isotropic away from the wall. It would thus be interesting to compare
the present results with those in the MHD channel flow.
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